Co-ordinated cyclo-Tetraphosphoxane and cyclo-Pentaphosphoxane; Two Configurations of the Co-ordinated $\mathrm{P}_{4} \mathrm{O}_{4}$ Ring

Edward H. Wong, ${ }^{\text {a a Eric J. Gabe, }}$ b and Florence L. Lee ${ }^{\text {b }}$
a Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, U.S.A.
b Chemistry Division, National Research Council of Canada, Ottawa, Canada K1A OR9
Thermal reactions of hexacarbonyl-chromium or -tungsten with bis(di-isopropylamino)phosphine oxide or photolysis of $\mathrm{Mo}(\mathrm{CO})_{6}$ with $\left[\mathrm{Pri}_{2} \mathrm{NPO}\right]_{3}$ afforded cis- $\mathrm{M}(\mathrm{CO})_{4}\left[\mathrm{Pri}_{2} \mathrm{NPO}\right]_{4}$, which contains both chair-boat and chair-chair forms of the co-ordinated $\mathrm{P}_{4} \mathrm{O}_{4}$ ring in solution as well as in the molecular structure; additional products of the chromium reaction include the chromium cage complex, $\mathrm{Cr}_{2}(\mathrm{CO})_{8}\left[\mathrm{Pri}_{2} \mathrm{NPO}_{4}\right.$, and $\mathrm{Cr}_{2}(\mathrm{CO})_{7}\left[\mathrm{Pri}_{2} \mathrm{NPO}_{5}\right.$ which contains the novel cyclo-pentaphosphoxane $\mathrm{P}_{5} \mathrm{O}_{5}$ ring co-ordinated to one cis- $\mathrm{Cr}(\mathrm{CO})_{4}$ and one fac- $\mathrm{Cr}(\mathrm{CO})_{3}$ moiety.

Although cyclophosphates form a well known class of compounds, ${ }^{1}$ cyclophosphoxanes, $[\mathrm{RPO}]_{n}$, are relatively rare. ${ }^{2}$ Through our interest in the co-ordination chemistry of bis(dialkylamino)phosphine oxides with metal carbonyls, we have isolated and characterized co-ordinated tri- and tetra-
phosphoxanes, apparently formed by metal-assisted amine elimination and oligomerization. ${ }^{3,4}$ The latter formed ada-mantane-like cage complexes of the type $\mathrm{M}_{2}(\mathrm{CO})_{8}\left[\mathrm{R}_{2} \mathrm{NPO}\right]_{4}$ featuring the $\mathrm{P}_{4} \mathrm{O}_{4}$ ring in a boat-boat configuration, allowing chelation of two metals in a back-to-back orientation. We

Figure 1. Molecular structure of $\mathrm{Mo}(\mathrm{CO})_{4}\left[\mathrm{Pri}_{2} \mathrm{NPO}_{4},(1 \mathrm{c})\right.$. Key bond lengths (\AA) and angles $\left({ }^{\circ}\right): M o-P(1) 2.492(2)$, Mo-C(1) $1.978(9)$, $\mathrm{Mo}-\mathrm{C}(2) 2.007(9), \mathrm{P}(1)-\mathrm{N}(1) 1.660(6), \mathrm{P}(2)-\mathrm{N}(2) 1.667(8), \mathrm{P}\left(2^{\prime}\right)-$ $\mathrm{N}(2)$ 1.74(1), $\mathrm{P}(1)-\mathrm{Mo}-\mathrm{P}(1 \mathrm{~A}) 76.18(8), \mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(2 \mathrm{~A}) 168.7(4)$, $\mathrm{P}(1)-\mathrm{O}(3)-\mathrm{P}(2) \quad 125.3(3), \mathrm{P}(1)-\mathrm{O}(3)-\mathrm{P}\left(2^{\prime}\right) \quad 127.1(4), \mathrm{P}(1)-\mathrm{O}(4)-$ $\mathrm{P}\left(2^{\prime} \mathrm{A}\right) 121.6(4)$.
report the synthesis and characterization of cis-M(CO) 4_{4} $\left[\mathrm{Pri}_{2} \mathrm{NPO}\right]_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$, which contains both the chair-boat and the chair-chair configurations of the tetraphosphoxane heterocycle. We also report here the structure of the first pentaphosphoxane $\mathrm{P}_{5} \mathrm{O}_{5}$ ring complex, a side product of the chromium reaction.

When hexacarbonyl-chromium or -tungsten is refluxed in toluene with bis(di-isopropylamino)phosphine oxide (2 equiv.) for extended periods of time ($48-60 \mathrm{~h}$), the major isolated product ($\sim 50 \%$ yield) is white cis-M(CO) $4_{4}\left[\mathrm{Pr}_{2}{ }_{2} \mathrm{NPO}\right]_{4}$ [$\mathrm{M}=\mathrm{Cr}(\mathbf{1 a}) ; \mathrm{M}=\mathrm{W}(\mathbf{1 b})]$ based on elemental analyses and i.r. spectroscopy. The molybdenum analogue (1c) can be prepared by photolysis of $\mathrm{Mo}(\mathrm{CO})_{6}$ with the triphosphoxane $\left[\mathrm{Pri}_{2} \mathrm{NPO}\right]_{3}$ [Hanovia 450 W medium-pressure Hg lamp, 18 h in tetrahydrofuran (THF)]. ${ }^{3}$ All three products show a mixture of $70 \% \mathrm{~A}_{2} \mathrm{XY}$ and $30 \% \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ patterns in their ${ }^{31} \mathrm{P}$ solution n.m.r. spectra. Variable temperature n.m.r. studies [e.g. (1a) in $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$ from 20 to $160^{\circ} \mathrm{C}$] revealed no significant temperature dependence in either the appearance or relative proportions of the two species, indicative of a substantial barrier to phosphorus inversion.

A single-crystal X-ray study of (1c) revealed a structure with the $\mathrm{Mo}(\mathrm{CO})_{4}$ moiety 1,5 -co-ordinated to a tetraphosphoxane $\left[\mathrm{Pr}_{2}{ }_{2} \mathrm{NPO}\right]_{4}$ ring (Figure 1). \dagger Mirroring the solution ${ }^{31} \mathrm{P}$ n.m.r. spectral results, two configurations of this $\mathrm{P}_{4} \mathrm{O}_{4}$ ring are found

[^0]

Figure 2. The chair-boat and chair-chair configurations in (1c). $P(2)$ and $\mathrm{P}\left(2^{\prime}\right)$ are related by a phosphorus inversion about $\mathrm{O}(3), \mathrm{O}(4 \mathrm{~A})$, and $N(2)$.

Figure 3. Molecular structure of $\mathrm{Cr}_{2}(\mathrm{CO})_{7}\left[\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NPO}\right]_{5}$, (3). Key bond lengths (\AA) and bond angles (${ }^{\circ}$): $\mathrm{Cr}(1)-\mathrm{P}(1) 2.352(4), \mathrm{Cr}(1)-\mathrm{P}(2)$ 2.336(5), $\quad \mathrm{Cr}(2)-\mathrm{P}(3) \quad 2.288(5), \quad \mathrm{Cr}(2)-\mathrm{P}(4) 2.315(4), \quad \mathrm{Cr}(2)-\mathrm{P}(5)$ 2.312(5), $\mathrm{P}(1)-\mathrm{N}(1) 1.67(1), \mathrm{P}(2)-\mathrm{N}(2) 1.69(1), \mathrm{P}(3)-\mathrm{N}(3) 1.67(1)$, $\mathrm{P}(4)-\mathrm{N}(4) 1.65(1), \mathrm{P}(5)-\mathrm{N}(5) 1.66(1), \mathrm{P}(1)-\mathrm{Cr}(1)-\mathrm{P}(2) 89.3(2)$, $\mathrm{P}(3)-\mathrm{Cr}(2)-\mathrm{P}(4) 92.3(2), \mathrm{P}(3)-\mathrm{Cr}(2)-\mathrm{P}(5) 91.1(2), \mathrm{P}(4)-\mathrm{Cr}(2)-\mathrm{P}(5)$ 66.4(2), $\mathrm{P}(1)-\mathrm{O}(2)-\mathrm{P}(3) 130.3(6), \mathrm{P}(3)-\mathrm{O}(1)-\mathrm{P}(2)$ 129.7(6), $\mathrm{P}(2)-$ $\mathrm{O}(3)-\mathrm{P}(4) \quad 134.3(5), \quad \mathrm{P}(4)-\mathrm{O}(4)-\mathrm{P}(5) \quad 101.0(5), \quad \mathrm{P}(5)-\mathrm{O}(5)-\mathrm{P}(1)$ 132.6(6).
with relative occupancies of $2: 1$ (chair-boat/chair-chair, Figure 2). The disorder involves only the unco-ordinated phosphorus atom, $\mathrm{P}(2)$, and associated di-isopropyl groups, $\mathrm{C}(9)-\mathrm{C}(14)$. A two-fold axis through the metal centre correlates the halves of its co-ordination sphere. A phosphorus inversion anchored at two phosphoxane oxygens, $\mathrm{O}(3)$ and $\mathrm{O}(4 \mathrm{~A})$, and one nitrogen, $\mathrm{N}(2)$, relates $\mathrm{P}(2)$ in the chair configuration to $\mathrm{P}\left(2^{\prime}\right)$ in the boat form. The chair-chair ring is flattened considerably since the unco-ordinated $P(2)$ and $P(2 A)$ are bent away from the axial metal carbonyl groups to within $0.1 \AA$ of the phosphoxane oxygen plane $[\mathrm{O}(3), \mathrm{O}(3 \mathrm{~A})$, $\mathrm{O}(4), \mathrm{O}(4 \mathrm{~A})]$. With the $\mathrm{P}(2) \cdots \mathrm{C}(2)$ contact at $0.5 \AA$ below the van der Waals' radii sum, the axial carbonyl-metalcarbonyl angle is distorted away from linearity to $168.7(4)^{\circ}$. This molybdenum co-ordination sphere is thus quite similar to that found in the $\mathrm{Mo}_{2}(\mathrm{CO})_{8}\left[\mathrm{Pr}_{2} \mathrm{NPO}_{4}\right.$ cage complex. ${ }^{4}$ Again, the sum of bond angles around each nitrogen is consistent with planarity and multiple $\mathrm{P}-\mathrm{N}$ bonding.

The reaction mixture from the synthesis of (1a) also contained light yellow chromium complexes (2) (5\%) and (3) (10%). Complex (2) analysed as $\mathrm{Cr}(\mathrm{CO})_{4}\left[\mathrm{Pr}_{2} \mathrm{NPO}_{2}\right.$. Based on its spectral properties [i.r.: $v_{\text {CO }}$ 2001, 1975, 1920, 1891 cm^{-1}; $v_{\mathrm{POP}} 844 \mathrm{~cm}^{-1}$; ${ }^{31}$ P n.m.r.: $\delta+159.4$ p.p.m.]; we assign it the adamantane-like cage structure previously found for its molybdenum analogue. ${ }^{4}$ Complex (3) has low symmetry and exhibits six i.r. metal-carbonyl stretches at 2011, 1961, 1936, 1915, 1883, and $1871 \mathrm{~cm}^{-1}$, as well as a broad $v_{\text {POP }}$ at 890 $\mathrm{cm}^{-1} .5$ The solution ${ }^{31} \mathrm{P}$ n.m.r. spectrum of (3) contains an $\mathrm{A}_{2} \mathrm{MX}_{2}$ pattern $\left(\delta_{\mathrm{A}}+176.6, \delta_{\mathrm{M}}+175.1, \delta_{\mathrm{X}}+156.9\right.$ p.p.m.; $J_{\mathrm{AM}} 9, J_{\mathrm{AX}} \approx 0, J_{\mathrm{MX}} 40 \mathrm{~Hz}$). Complex (3) analysed as $\mathrm{Cr}_{2}(\mathrm{CO})_{7}\left[\mathrm{Pr}_{2} \mathrm{NPO}_{5}\right.$ and has the molecular structure shown in Figure 3 . \dagger Pertinent features include a novel pentaphosphoxane $\mathrm{P}_{5} \mathrm{O}_{5}$ heterocycle co-ordinated to one cis $-\mathrm{Cr}(\mathrm{CO})_{4}$ and one fac- $\mathrm{Cr}(\mathrm{CO})_{3}$ moiety. The ring angles at $\mathrm{O}(1), \mathrm{O}(3)$, and $O(5)$, are $129.7(6), 134.3(5)$, and $132.6(6)^{\circ}$, respectively. For
the four-membered chelate ring $[\mathrm{Cr}(2), \mathrm{P}(4), \mathrm{O}(4), \mathrm{P}(5)]$ included in the fac- $\mathrm{Cr}(2)$ co-ordination sphere, the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle is only $101.0(5)^{\circ}$, while the $\mathrm{P}(4)-\mathrm{Cr}(2)-\mathrm{P}(5)$ angle is compressed to an unusually small value of $66.4(2)^{\circ} .{ }^{6}$ Bond angle sums around the five nitrogens are all within 2° of planarity.

Complexes (1), (2), and (3) further demonstrate the compliancy of $[\mathrm{RPO}]_{n}$ heterocycles in their co-ordination geometries and the ability of metal co-ordination to provide supra-structures for novel heterocycles. ${ }^{7}$ We are currently exploring the use of (1) as a precursor to bimetallic cage complexes.

We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for financial support.

Received, 13th April 1989; Com. 9/01527B

References

1 A. Durif, in 'The Chemistry of Inorganic Homo- and Heterocycles,' eds. I. Haiduc and D. B. Sowerby, Academic Press, New York, 1987, vol. 2, ch. 22.
2 D. W. Chasar, J. P. Fackler, A. M. Mazany, R. A. Komoroski, and W. J. Kroenke, J. Am. Chem. Soc., 1986, 108, 5956.

3 E. H. Wong, E. J. Gabe, and J.-P. Charland, J. Chem. Soc., Chem. Commun., 1988, 1632.
4 E. H. Wong, M. M. Turnbull, K. D. Hutchinson, C. Valdez, E. J. Gabe, F. L. Lee, and Y. Le Page, J. Am. Chem. Soc., 1988, 110, 8422.

5 Professor Mark M. Turnbull at Clark University has independently prepared this same complex in over 30% yield from the reaction of $\mathrm{Cr}(\mathrm{CO})_{6}$ and di(isopropylamino) phosphine oxide in xylene. C. M. Banse, M. A. Pray, and M. M. Turnbull, manuscript in preparation.
6 E. H. Wong, L. Prasad, E. J. Gabe, and F. C. Bradley, J. Organomet. Chem., 1982, 236, 321.

7 A. L. Rheingold and A.-J. DiMaio, Organometallics, 1986, 5, 393.

[^0]: \dagger Crystal data for (1c): $\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{MoN}_{4} \mathrm{O}_{8} \mathrm{P}_{4}$, monoclinic, $a=18.992(1)$, $b=11.306(1), c=19.368(1) \AA, \beta=98.63(1)^{\circ}$, space group $A 2 / a, Z=$ $4, D_{\mathrm{c}}=1.219 \mathrm{Mg} \mathrm{m}^{-3}$. Of the 2630 unique reflections measured, 2219 were used in the final refinement to give $R_{\mathrm{f}}=0.062$ and $R_{\mathrm{w}}=0.057$. $P(2)$ and $P\left(2^{\prime}\right)$ were assigned 0.7 and 0.3 occupancies, respectively, which refined to 0.697 and 0.320 . For (3): $\mathrm{C}_{37} \mathrm{Cr}_{2} \mathrm{H}_{70} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{P}_{5}$, monoclinic, $a=12.655(1), b=17.639(1), c=23.670(1) \AA, \beta=$ $101.82(1)^{\circ}$, space group $P 2_{1} / c, Z=4, D_{\mathrm{c}}=1.240 \mathrm{Mg} \mathrm{m}^{-3}$. Of the 6667 unique reflections measured, 4337 were considered significant and used in the refinement to give $R_{\mathrm{f}}=0.088$ and $R_{\mathrm{w}}=0.081$. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

